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If S =0, it is trivial. Suppose S # 0, we first claim that if a € S, S\{a} is also finite. The
argument is as follow:
As S is finite and non-empty, there exist bijective function f : N,, — S for some n € N and there

exist unique k € N,, such that f(k) = a. Then we define a function g : N,,_; — S\{a}

10 if1<i<k-—1
fli—1) ifk<i<n-—1

g(i) =
Then we are going to show that g is a bijective function.

e Suppose g(i) = ¢(j). Then either 1 < i,57 < k—1or k < i,j < n—1. Otherwise, say
1<i<k—-1land k <j <n-—1, then we have f(i) = g(:) = g(j) = f(j +1). By the
injectivity of f, we have i = j + 1 which is a contradiction.

Now, if 1 < 4,5 < k—1, we have f(i) = ¢g(i) = g(j) = f(j) and so i = j; otherwise
k<i,j<n-—1,wehave f(i+1) =g(i) = g(j) = f(j + 1) which implies i + 1 = j + 1 and
so i = j. Therefore, g is an injective function.

e Let y € S\{a}. Firstly, y € S, there exists 1 < j < n such that f(j) = y. Note that y # a
andsoj#k. If1 <j<k-—1,take i = j, then we havei € N,,_; and g(i) = f(i) = f(j) = y;
ifk+1<j<mn,taket =45 —1, then we have kK < i < nmn—1and soi € N,,_; and
g9(i) = f(i+1) = () = v

Therefore, g is a surjective function.

Therefore, g is a bijective function and S\{a} is finite.
Next, we will prove the statement by induction. When n = 0, it is trivial. Assume the statement
is true for sets of n elements. Let S have n+1 elements. If T' = S, it is done. Otherwise 3 a € S\T

and T'C S\{a}. Since S\{a} has n elements, T is finite.
The statement is proved by the contrapositve of la.

The set of all prime number is a subset of NT and so it is countable. It is also nonempty. We
will prove the statement by contradiction. Suppose the set of prime number is finite and has n
elements. let py, po, ..., py be the elements. Consider p = p1ps - - - pn, + 1. p can not be divided by
p; for any 1 < i < n. By prime factorization, p is divided by some prime factor ¢ which is not in
the set. It leads to a contradiction. Therefore the set of all prime numbers is a countably infinite

set.

Let f : N* — A be a function defined by
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(When n is odd, the first term vanishes and we have f(1) =0, f(3) =5, f(5) = 10 and etc; when
n is even, the second term vanishes and we have f(2) = —5, f(4) = —10, f(6) = —15 and etc.)

Then we are going to show that f is bijective.

e If f(m) = f(n),then either both m and n are even or both of them are odd (otherwise, when
we compute f(m) and f(n), one is nonnegative while the other one is negative, which is a
contradiction.)

Now, suppose that both m and n are even. Then,

f(m) = f(n)
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Suppose that both m and n are odd. Then,
fm) = [f(n)
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Therefor, f is an injective function.

e Let g € A.
Suppose that ¢ > 0, we take n = %q +1 &€ NT. Then,

fn) = FCE +1) =5
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Suppose that ¢ < 0, we take n = —?q € N™. Then,

fn) = $(-2) =5

{«—1)-s-l—1><—2;>+<1+<—1>-?-1><—?—1>} 5(=2)(-%)

Therefore, f is surjective function.
Therefore, f is a bijective function and A is a countably infinite set.
. Let d =gcd(a, b).
(=)
Suppose ¢ = as + bt. Since d | a, then d | as. Since d | b, then d | bt. Therefore d | as + bt = c.
(<)
Suppose d | c. First 3 sg, tg € Z s.t. d = asg + btg. Since d | ¢, ¢ = nd for some n € Z. Then
¢ =nl(asg + bty) = a(nsg) + b(nty).



5a. By Extended Euclidean Algorithm, we have

27=3x8+3 gcd(27,8) =1=3-2
8=2x3+2 =3-(8-2x3)
3=2+1 =3x3=8

=3x(2T-3x8)—-8
=3x27-10x8
Therefore,
8x =3 (mod 27)
(—10)(8z) = (—10)3 (mod 27)

r=24 (mod 27)

5b. By Extended Euclidean Algorithm, we have

18=2x7+4 ged(18,7) =1=4-3
T=4+3 =4 (7T—4)
4=3+1 =2x4-7

—2x(18—2x7)—7

=2x18-5x%x7
Therefore,
Tx+32=6 (mod 18)
Tr = —26 (mod 18)
Tz =10 (mod 18)
(=5)(7z) = —50 (mod 18)
xr=4 (mod 18)

6a. p(15) =p(3-5)=B—-1)(6—1)=38
6b. Since ged(8, 15) = 1, by Euler’s theorem, we have 8#(1) = 1 (mod 15), so 8% = 1 (mod 15). Then
82017 — 881278 (1od 15)
=1'%.38 (mod 15)

=8 (mod 15)

7. Find all integer x such that x = 3 (mod 11), z = 4 (mod 13). By Extended Euclidean Algorithm,

13=11+4+2 ged(13,11) =1=11-5x2
11=5x2+1 =11-5x (13 —-11)
=6x11—-5x13



8.

By Chinese Reminder Theorem,

(a)

i.

ii.

iii.

ii.

£=3-13-(=5)+4-11-6 (mod 143)

x =69 (mod 143)

©(17-23) = (17 —1)(23 — 1) = 16 - 22 = 352. Then we choose e = 3 and the public key
is (391, 3).
By Extended Euclidean Algorithm, we have gcd(352,3) = 1 = 352 — 117 x 3. Then we
find the private key d by solving ed = 1 (mod ¢(n)),
3d=1 (mod 352)
(—=177)(3d) = —177 (mod 352)

d=175 (mod 352)
The ciphertext ¢ can be found by ¢ = m® (mod n). Hence

c=33% (mod 391)

¢ =356 (mod 391)

Therefore, ¢ = 356.
By Extended Euclidean Algorithm, we have ged(352,29) =1 = 85 x 29 — 7 x 352. Then
we find the private key d.
29d=1 (mod 352)
85(29d) = 85 (mod 352)

d=85 (mod 352)

Therefore, if e = 29, the private key d = 85.

The orrginal message m is given by m = ¢? (mod n). Since 18%% = 154 (mod 391), we

have m = 154.

9. Given a ciphertext ¢ = 125 and a public key (n,e) = (28459,109). First, 28459 = 149 - 191 and
©(28459) = (149 — 1) - (191 — 1) = 148 - 190 = 28120. Then by Extended Euclidean Algorithm,
we have ged(28120,109) = 1 = 54 x 28120 — 13931 x 109. Next we find the private key d.

109d = 1 (mod 28120)
(—13931)(109d) = —13931 (mod 28120)

d = 14189 (mod 28120)

Finally, we find m by m = ¢? (mod 28459)

125189 = 10320 (mod 28459)

Therefore, the original message m = 10320.



