THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Suggested Solution to Assignment 3

1a. If $S = \emptyset$, it is trivial. Suppose $S \neq \emptyset$, we first claim that if $a \in S$, $S \setminus \{a\}$ is also finite. The argument is as follow:

As S is finite and non-empty, there exist bijective function $f : \mathbb{N}_n \to S$ for some $n \in \mathbb{N}^+$ and there exist unique $k \in \mathbb{N}_n$ such that f(k) = a. Then we define a function $g : \mathbb{N}_{n-1} \to S \setminus \{a\}$

$$g(i) = \begin{cases} f(i) & \text{if } 1 \le i \le k-1 \\ f(i-1) & \text{if } k \le i \le n-1 \end{cases}$$

Then we are going to show that g is a bijective function.

• Suppose g(i) = g(j). Then either $1 \le i, j \le k - 1$ or $k \le i, j \le n - 1$. Otherwise, say $1 \le i \le k - 1$ and $k \le j \le n - 1$, then we have f(i) = g(i) = g(j) = f(j + 1). By the injectivity of f, we have i = j + 1 which is a contradiction.

Now, if $1 \le i, j \le k - 1$, we have f(i) = g(i) = g(j) = f(j) and so i = j; otherwise $k \le i, j \le n - 1$, we have f(i + 1) = g(i) = g(j) = f(j + 1) which implies i + 1 = j + 1 and so i = j. Therefore, g is an injective function.

• Let $y \in S \setminus \{a\}$. Firstly, $y \in S$, there exists $1 \leq j \leq n$ such that f(j) = y. Note that $y \neq a$ and so $j \neq k$. If $1 \leq j \leq k-1$, take i = j, then we have $i \in \mathbb{N}_{n-1}$ and g(i) = f(i) = f(j) = y; if $k+1 \leq j \leq n$, take i = j-1, then we have $k \leq i \leq n-1$ and so $i \in \mathbb{N}_{n-1}$ and g(i) = f(i+1) = f(j) = y.

Therefore, g is a surjective function.

Therefore, g is a bijective function and $S \setminus \{a\}$ is finite.

Next, we will prove the statement by induction. When n = 0, it is trivial. Assume the statement is true for sets of n elements. Let S have n+1 elements. If T = S, it is done. Otherwise $\exists a \in S \setminus T$ and $T \subseteq S \setminus \{a\}$. Since $S \setminus \{a\}$ has n elements, T is finite.

- 1b. The statement is proved by the contrapositve of 1a.
- 2. The set of all prime number is a subset of \mathbb{N}^+ and so it is countable. It is also nonempty. We will prove the statement by contradiction. Suppose the set of prime number is finite and has n elements. let p_1, p_2, \ldots, p_n be the elements. Consider $p = p_1 p_2 \cdots p_n + 1$. p can not be divided by p_i for any $1 \le i \le n$. By prime factorization, p is divided by some prime factor q which is not in the set. It leads to a contradiction. Therefore the set of all prime numbers is a countably infinite set.
- 3. Let $f: \mathbb{N}^+ \to A$ be a function defined by

$$f(n) = 5 \Big[\frac{((-1)^{n-1} - 1)n}{4} + \frac{(1 + (-1)^{n-1})(n-1)}{4} \Big]$$

(When n is odd, the first term vanishes and we have f(1) = 0, f(3) = 5, f(5) = 10 and etc; when n is even, the second term vanishes and we have f(2) = -5, f(4) = -10, f(6) = -15 and etc.) Then we are going to show that f is bijective.

If f(m) = f(n), then either both m and n are even or both of them are odd (otherwise, when we compute f(m) and f(n), one is nonnegative while the other one is negative, which is a contradiction.)

Now, suppose that both m and n are even. Then,

$$f(m) = f(n)$$

$$5\left[\frac{((-1)^{m-1}-1)m}{4} + \frac{(1+(-1)^{m-1})(m-1)}{4}\right] = 5\left[\frac{((-1)^{n-1}-1)n}{4} + \frac{(1+(-1)^{n-1})(n-1)}{4}\right]$$

$$\frac{5(-2m)}{4} = \frac{5(-2n)}{4}$$

$$m = n$$

Suppose that both m and n are odd. Then,

$$f(m) = f(n)$$

$$5\left[\frac{((-1)^{m-1}-1)m}{4} + \frac{(1+(-1)^{m-1})(m-1)}{4}\right] = 5\left[\frac{((-1)^{n-1}-1)n}{4} + \frac{(1+(-1)^{n-1})(n-1)}{4}\right]$$

$$\frac{10(m-1)}{4} = \frac{10(n-1)}{4}$$

$$m = n$$

Therefor, f is an injective function.

• Let $q \in A$.

Suppose that $q \ge 0$, we take $n = \frac{2q}{5} + 1 \in \mathbb{N}^+$. Then,

$$f(n) = f(\frac{2q}{5}+1) = 5\left[\frac{((-1)^{\frac{2q}{5}}-1)(\frac{2q}{5}+1)}{4} + \frac{(1+(-1)^{\frac{2q}{5}})(\frac{2q}{5})}{4}\right] = 5\left[\frac{2(\frac{2q}{5})}{4}\right] = q$$

Suppose that q < 0, we take $n = -\frac{2q}{5} \in \mathbb{N}^+$. Then,

$$f(n) = f(-\frac{2q}{5}) = 5\left[\frac{((-1)^{-\frac{2q}{5}-1}-1)(-\frac{2q}{5})}{4} + \frac{(1+(-1)^{-\frac{2q}{5}-1})(-\frac{2q}{5}-1)}{4}\right] = \frac{5(-2)(-\frac{2q}{5})}{4} = q$$

Therefore, f is surjective function.

Therefore, f is a bijective function and A is a countably infinite set.

4. Let $d = \gcd(a, b)$.

 (\Rightarrow)

Suppose c = as + bt. Since $d \mid a$, then $d \mid as$. Since $d \mid b$, then $d \mid bt$. Therefore $d \mid as + bt = c$.

Suppose $d \mid c$. First $\exists s_0, t_0 \in \mathbb{Z}$ s.t. $d = as_0 + bt_0$. Since $d \mid c, c = nd$ for some $n \in \mathbb{Z}$. Then $c = n(as_0 + bt_0) = a(ns_0) + b(nt_0)$.

5a. By Extended Euclidean Algorithm, we have

$$27 = 3 \times 8 + 3 \qquad \gcd(27, 8) = 1 = 3 - 2$$
$$8 = 2 \times 3 + 2 \qquad = 3 - (8 - 2 \times 3)$$
$$3 = 2 + 1 \qquad = 3 \times 3 = 8$$
$$= 3 \times (27 - 3 \times 8) - 8$$
$$= 3 \times 27 - 10 \times 8$$

Therefore,

$$8x \equiv 3 \pmod{27}$$
$$(-10)(8x) \equiv (-10)3 \pmod{27}$$
$$x \equiv 24 \pmod{27}$$

5b. By Extended Euclidean Algorithm, we have

$$18 = 2 \times 7 + 4$$

$$7 = 4 + 3$$

$$4 = 3 + 1$$

$$gcd(18, 7) = 1 = 4 - 3$$

$$= 4 - (7 - 4)$$

$$= 2 \times 4 - 7$$

$$= 2 \times (18 - 2 \times 7) - 7$$

$$= 2 \times 18 - 5 \times 7$$

Therefore,

$$7x + 32 \equiv 6 \pmod{18}$$

$$7x \equiv -26 \pmod{18}$$

$$7x \equiv 10 \pmod{18}$$

$$(-5)(7x) \equiv -50 \pmod{18}$$

$$x \equiv 4 \pmod{18}$$

6a. $\varphi(15) = \varphi(3 \cdot 5) = (3 - 1)(5 - 1) = 8$

6b. Since gcd(8, 15) = 1, by Euler's theorem, we have $8^{\varphi(15)} \equiv 1 \pmod{15}$, so $8^8 \equiv 1 \pmod{15}$. Then

$$8^{2017} \equiv 8^{8 \cdot 127} \cdot 8 \pmod{15}$$
$$\equiv 1^{125} \cdot 8 \pmod{15}$$
$$\equiv 8 \pmod{15}$$

7. Find all integer x such that $x \equiv 3 \pmod{11}$, $x \equiv 4 \pmod{13}$. By Extended Euclidean Algorithm,

$$13 = 11 + 2 \qquad \gcd(13, 11) = 1 = 11 - 5 \times 2$$
$$11 = 5 \times 2 + 1 \qquad = 11 - 5 \times (13 - 11)$$
$$= 6 \times 11 - 5 \times 13$$

By Chinese Reminder Theorem,

$$x \equiv 3 \cdot 13 \cdot (-5) + 4 \cdot 11 \cdot 6 \pmod{143}$$
$$x \equiv 69 \pmod{143}$$

- 8. (a) i. $\varphi(17 \cdot 23) = (17 1)(23 1) = 16 \cdot 22 = 352$. Then we choose e = 3 and the public key is (391, 3).
 - ii. By Extended Euclidean Algorithm, we have $gcd(352,3) = 1 = 352 117 \times 3$. Then we find the private key d by solving $ed \equiv 1 \pmod{\varphi(n)}$,

$$3d \equiv 1 \pmod{352}$$
$$(-177)(3d) \equiv -177 \pmod{352}$$
$$d \equiv 175 \pmod{352}$$

iii. The ciphertext c can be found by $c \equiv m^e \pmod{n}$. Hence

$$c \equiv 33^3 \pmod{391}$$
$$c \equiv 356 \pmod{391}$$

Therefore, c = 356.

(b) i. By Extended Euclidean Algorithm, we have $gcd(352, 29) = 1 = 85 \times 29 - 7 \times 352$. Then we find the private key d.

$$29d \equiv 1 \pmod{352}$$
$$85(29d) \equiv 85 \pmod{352}$$
$$d \equiv 85 \pmod{352}$$

Therefore, if e = 29, the private key d = 85.

- ii. The original message m is given by $m \equiv c^d \pmod{n}$. Since $18^{85} \equiv 154 \pmod{391}$, we have m = 154.
- 9. Given a ciphertext c = 125 and a public key (n, e) = (28459, 109). First, $28459 = 149 \cdot 191$ and $\varphi(28459) = (149 1) \cdot (191 1) = 148 \cdot 190 = 28120$. Then by Extended Euclidean Algorithm, we have $gcd(28120, 109) = 1 = 54 \times 28120 13931 \times 109$. Next we find the private key d.

$$109d \equiv 1 \pmod{28120}$$

 $(-13931)(109d) \equiv -13931 \pmod{28120}$
 $d \equiv 14189 \pmod{28120}$

Finally, we find m by $m \equiv c^d \pmod{28459}$

$$125^{14189} \equiv 10320 \pmod{28459}$$

Therefore, the original message m = 10320.